引用本文: | 刘乐菲,葛富东,陈阳泉.含参数不确定性的非线性分数阶系统输出反馈控制(英文)[J].控制理论与应用,2025,42(6):1124~1131.[点击复制] |
LIU Le-fei,GE Fu-dong,CHEN Yang-quan.Output feedback control for nonlinear fractional-order systems with parametric uncertainties[J].Control Theory & Applications,2025,42(6):1124~1131.[点击复制] |
|
含参数不确定性的非线性分数阶系统输出反馈控制(英文) |
Output feedback control for nonlinear fractional-order systems with parametric uncertainties |
摘要点击 43 全文点击 3 投稿时间:2024-03-27 修订日期:2025-06-11 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号 10.7641/CTA.2024.40174 |
2025,42(6):1124-1131 |
中文关键词 输出反馈控制 PI观测器设计 非线性分数阶系统 参数不确定性 渐近稳定性 |
英文关键词 output feedback control PI observer design nonlinear fraction-order systems parametric uncertainties asymptotic stability |
基金项目 |
|
中文摘要 |
研究了具有参数不确定性的非线性分数阶系统的输出反馈控制问题. 为此, 首先提出一种新颖的分数阶比例积
分(PI)观测器对未知状态进行估计, 利用拉普拉斯变换和Gronwall-Bellman不等式得到观测器误差系统渐近稳定的充分
条件; 随后, 基于分数阶Lyapunov稳定性定理研究系统的输出反馈控制问题, 并分析相应闭环系统的渐近稳定性; 最后
给出了具体的数值仿真算例, 从而说明本文所得理论结果的有效性和适用性. |
英文摘要 |
This paper is concerned with the output feedback control problems of nonlinear fractional-order systems
involving parametric uncertainties. Toward this aim, we first propose a novel fractional-order proportional integral (PI)
observer to estimate the unknown state of the considered system. Sufficient conditions for asymptotical stability of the resulting observer error systems are then obtained by using the Laplace transformation and the Gronwall-Bellman inequality.
Subsequently, output feedback control problem of the studied system is considered and asymptotic stability of corresponding closed-loop system is derived based on the fractional Lyapunov stability theorem. At last, to illustrate the effectiveness
and practical applicability of our obtained theoretical results, we provide a detailed numerical example. |