引用本文:李鹏,宋申民,陈兴林.自适应平方根无迹卡尔曼滤波算法[J].控制理论与应用,2010,27(2):143~146.[点击复制]
LIPENG,SONG Shen-min,CHEN Xing-lin.Adaptive square-root unscented Kalman filter algorithm[J].Control Theory and Technology,2010,27(2):143~146.[点击复制]
自适应平方根无迹卡尔曼滤波算法
Adaptive square-root unscented Kalman filter algorithm
摘要点击 4569  全文点击 3334  投稿时间:2009-06-23  修订日期:2009-09-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2010.2.ICTA090820
  2010,27(2):143-146
中文关键词  高斯过程回归  平方根无迹卡尔曼滤波器  自适应
英文关键词  Gaussian process regression  square root unscented Kalman filter  adaptive
基金项目  
作者单位E-mail
李鹏* 哈尔滨工业大学 航天学院 peng_li@hit.edu.cn 
宋申民 哈尔滨工业大学 航天学院  
陈兴林 哈尔滨工业大学 航天学院  
中文摘要
      将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法, 本文提出了一种不确定系统模型协方差自适应调节滤波算法. 该算法分为学习和估计两部分: 学习阶段用高斯过程对训练数据进行学习, 得到系统回归模型及噪声协方差; 估计阶段由回归模型代替状态方程和观测方程, 相应的噪声协方差实时自适应调整. 该方法克服了传统方法容易受系统动态模型不确定性和噪声协方差不准确限制的问题, 仿真结果验证了算法的有效性.
英文摘要
      By combining the classical square root uncented Kalman filter(SRUKF) with Gaussian process regression, we derive a filter algorithm for an uncertain system model with inaccurate noise covariance. The new algorithm includes a learning stage and an estimation stage. In the first stage, Gaussian process regression is applied to learn the training data to obtain the regression model and the noise covariance of the dynamic system. In the second stage, state equations and observation equations are substituted by their regression models, respectively; the noise covariance is adaptively adjusted by using the Gaussian kernel function real-time. Thus, the problem of uncertain system model and inaccurate noise covariance in the classical filters are solved. Simulation results show the new algorithm is effective.