引用本文:张浩,于堃,刘国海,胡德水,赵文祥.三电机驱动系统的神经网络模糊自整定解耦控制(英文)[J].控制理论与应用,2013,30(9):1178~1186.[点击复制]
ZHANG Hao,YU Kun,LIU Guo-hai,HU De-shui,ZHAO Wen-xiang.Fuzzy self-tuning decoupling control based on neural network of three-motor drive system[J].Control Theory and Technology,2013,30(9):1178~1186.[点击复制]
三电机驱动系统的神经网络模糊自整定解耦控制(英文)
Fuzzy self-tuning decoupling control based on neural network of three-motor drive system
摘要点击 3039  全文点击 1868  投稿时间:2012-06-02  修订日期:2013-01-29
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.12126
  2013,30(9):1178-1186
中文关键词  三电机驱动  模糊自整定控制  启动特性  神经网络广义逆
英文关键词  three-motor drive  fuzzy self-tuning control  starting characteristics  neural network generalized inverse
基金项目  This work was supported by the National Natural Science Foundation of China (Nos.51007031, 51277194 and 61273154), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20123227110012), the Natural Science Foundation of Jiangsu Province (No. BK2012711), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fund Program of Jiangsu University for Excellent Youth Teachers.
作者单位E-mail
张浩* 东南大学 复杂工程系统测量与控制教育部重点实验室
江苏大学 电气信息工程学院 
hzhang@ujs.edu.cn 
于堃 江苏大学 电气信息工程学院 yukunemail@163.com 
刘国海 江苏大学 电气信息工程学院  
胡德水 江苏大学 电气信息工程学院  
赵文祥 江苏大学 电气信息工程学院  
中文摘要
      多电机驱动系统是一种多输入多输出、非线性、强耦合的系统. 它广泛应用在许多需要高精度协调控制的驱动领域, 比如电动汽车驱动、城市轨道交通以及印刷业等. 本文提出了一种新的方法用于三电机驱动系统的速度与张力的解耦控制, 其核心由模糊自整定控制与BP神经网络广义逆组成. 首先, 由神经网络广义逆与原系统串联实现复合伪线性系统; 其次, 在该伪线性系统中采用模糊自整定方法. 仿真结果表明: 所提方法能有效实现速度与张力间的解耦, 将三电机驱动系统转化为多个具有开环稳定性的单输入单输出线性子系统, 同时系统的响应速度快、超调量小、瞬态时间较短, 具有良好的跟踪性能, 这有助于改善系统的启动特性, 降低系统振荡.
英文摘要
      Multi-motor drive system is a multi-input multi-output (MIMO), nonlinear and strong-coupling system. It is applied to many drive fields where high precision coordinated control is of importance, such as the electric vehicle drive, urban rail transit, and printing. In this paper, a new control strategy is proposed for decoupling the speed and the tension of the three-motor drive system, in which the key is to incorporate the fuzzy self-tuning control with back-propagation (BP) neural network generalized inverse (NNGI). The pseudo-linear composite system is formed by connecting NNGI in series with the original system; and then, the fuzzy self-tuning control method is introduced to this pseudo-linear system. Simulation results demonstrate that the proposed strategy can effectively decouple speeds and tensions, and transform the three-motor drive system into several single-input single-output (SISO) linear subsystems with open-loop stability. This system has obvious superiority in rapid response speed, low overshoot, short transient time and good tracking effect, which help to improve the starting characteristics of the system and decrease the system oscillation.