引用本文:岳伟,吕顺,刘中常,李莉莉,王丽媛,邹存名.级联触发策略下非结构化道路的自主卡车队列控制[J].控制理论与应用,2023,40(9):1646~1656.[点击复制]
YUE Wei,LU Shun,LIU Zhong-chang,LI Li-li,WANG Li-yuan,ZOU Cun-ming.Cooperative control of autonomous truck platoon on unstructured road based on cascade-trigger strategy[J].Control Theory and Technology,2023,40(9):1646~1656.[点击复制]
级联触发策略下非结构化道路的自主卡车队列控制
Cooperative control of autonomous truck platoon on unstructured road based on cascade-trigger strategy
摘要点击 1048  全文点击 426  投稿时间:2022-02-11  修订日期:2023-07-03
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2022.20105
  2023,40(9):1646-1656
中文关键词  级联触发方案  卡车队列  非结构化弯曲道路  Zeno行为  队列稳定性
英文关键词  cascade-trigger scheme  autonomous truck platoon  curved road  Zeno behaviors  string stability
基金项目  大连市科技创新基金项目(2019J12GX040), 中央高校基本科研业务费项目(3132019355), 大连高层次人才创新支撑计划项目(2020RQ060); 辽宁 省教育厅基本科研重点项目(LJKZ1078)
作者单位E-mail
岳伟* 大连海事大学 weiy@dlmu.edu.cn 
吕顺 大连海事大学 船舶电气工程学院  
刘中常 大连海事大学 船舶电气工程学院  
李莉莉 大连海事大学 船舶电气工程学院  
王丽媛 大连民族大学 机电工程学院  
邹存名 辽宁警察学院 公共安全管理系  
中文摘要
      本文针对非结构化道路上自主卡车队列系统的控制问题进行研究, 设计一种基于级联触发的控制器,有效提高复杂工况下的卡车队列系统性能. 首先, 建立不依赖于道路结构的纵–横耦合卡车队列系统模型, 该模型涉及复杂环境下车辆存在故障(包括执行器、传感器的失效故障以及随机网络故障)影响. 其次, 为降低燃油消耗, 设计了基于自触发和事件触发的级联触发控制器, 并利用李雅普诺夫方法证明了系统的闭环稳定性. 此外, 通过对系统Zeno行为的分析量化, 得到了触发时间间隔的下界值, 保证了算法的实际应用性. 本文为了实现卡车系统队列稳定性控制目标, 进一步给出了控制器设计限制条件. 最后, 仿真结果表明, 所提出的控制方法不但能保证单车渐近稳定以及队列稳定, 还能有效减少执行器更新频率, 提高燃油经济性.
英文摘要
      In this paper, the control problem of truck platoon on unstructured roads is studied, and a controller based on cascade-trigger is designed to effectively improve the performance of the system under complex working conditions. Firstly, a longitudinal-lateral coupling truck platoon system model is established, which is independent of road structure. The model involves the influence of vehicle faults (including actuator, sensor fault and stochastic network fault) in complex environments. Secondly, in order to reduce fuel consumption, a cascade-trigger controller based on self-trigger and eventtrigger is designed, and the closed-loop stability of the system is proved by Lyapunov method. By analyzing and quantifying the Zeno behavior of the system, the lower bound of the trigger time interval is obtained, which ensures the practical application of the algorithm. In addition, the proposed controller is complemented by additional constraints to achieve string stability. Finally, the simulation results show that the proposed controller can not only ensure the individual vehicle stability and the string stability, but also reduce the frequency of actuator update and improve the fuel economy.