quotation:[Copy]
Jinkun LIU,Yu LU.[en_title][J].Control Theory and Technology,2010,8(2):249~256.[Copy]
【Print page】 【Online reading】【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1408   Download 450 本文二维码信息
码上扫一扫!
JinkunLIU,YuLU
0
()
摘要:
关键词:  
DOI:10.1007/s11768-010-8038-x
Received:March 13, 2008Revised:November 13, 2008
基金项目:
Adaptive RBF neural network control of robot with actuator nonlinearities
Jinkun LIU,Yu LU
(School of School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics)
Abstract:
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion.
Key words:  Adaptive control  RBF neural network  Actuator nonlinearity  Robot manipulator  Deadzone