quotation:[Copy]
J. Lorca ESPIRO,C.Mu˜noz POBLETE.[en_title][J].Control Theory and Technology,2013,11(2):275~281.[Copy]
【Print page】 【Online reading】【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 1697   Download 119 本文二维码信息
码上扫一扫!
J.LorcaESPIRO,C.Mu˜nozPOBLETE
0
(Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera;Departamento de Ingenieria Electrica, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera)
摘要:
关键词:  
DOI:
Received:April 08, 2011Revised:October 11, 2011
基金项目:
Symplectic feedback using Hamiltonian Lie algebra and its applications to an inverted pendulum
J. Lorca ESPIRO,C.Mu˜noz POBLETE
(Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera;Departamento de Ingenieria Electrica, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera)
Abstract:
From the symplectic representation of an autonomous nonlinear dynamical system with holonomic constraints, i.e., those that can be represented through a symplectic form derived from a Hamiltonian, we present a new proof on the realization of the symplectic feedback action, which has several theoretical advantages in demonstrating the uniqueness and existence of this type of solution. Also, we propose a technique based on the interpretation, construction and characterization of the pull-back differential on the symplectic manifold as a member of a one-parameter Lie group. This allows one to synthesize the control law that governs a certain system to achieve a desired behavior; and the method developed from this is applied to a classical system such as the inverted pendulum.
Key words:  Hamiltonian systems  Symplectic structures  Lie algebra  Nonlinear dynamical systems  Geometric control